Excess Spoil Disposal Configuration

Presented by:

John Morgan

Why no water on backfill?

- High permeability of backfill
- Broken and mixed overburden from blasting and excavation
- Backfill has no defined horizons
- Change to pre-mining stratigraphy
- No aquicludes until pavement
- Infiltration from ditches

Where is water?

- Storm flow in ditches
- Subsurface flow on coal pavement
- Subsurface flow discharge at down dip outcrop
- Some outcrop discharges covered by valley fill
- Discharge at toe of valley fill
- Very few surface flows
- Some ponds on solid benches

Subsurface Flow

Subsurface Flow (with fill)

Alternative Backfill Configuration?

- Objectives
 - Intercept groundwater discharge
 - Decrease ditch gradients
- Alternative Configuration
 - Construct combination conventional / side-hill fill
 - Tilt top surface of valley fills to one side
 - Create incised groin ditch with flatter slope

Typical Valley Fill Regrade

Modified Valley Fill Regrade

Evaluation of skewed fill

Advantages

- Intercepts flow at outcrop
- Collects some surface flow
- Increases probability of perennial flow

Disadvantages

- Increased flow rate in single ditch
- Concerns with regulatory stipulations for side hill fill
- Some increase in fill haulage height

AOC Model

- Provides an objective and reproducible means to define AOC
- Allows a subjective approach to be replaced with a volumetric definition
- Optimizes the placement of spoil
- Volumetric approach gives operator flexibility over final design
- Allows landforming, stream restoration and aquatic habitat projects

